

## **DEPARTMENT OF CHEMISTRY**

### Common Course Outline CHEM 272 – Bioanalytical Laboratory

#### **Course Description**

Develop and practice analytical laboratory techniques used in advanced chemistry and biochemistry. Experiments will include statistics and error analysis, UV/vis spectroscopy, protein/DNA quantitation, chemical and biochemical kinetics, equilibrium, acids/bases/buffers, and oxidation/reduction. The course will also focus on computerized data processing techniques, data interpretation and critical analysis, technical writing, and formal presentations.

**PREREQUISITE(S):** A grade of C or better in CHEM 203 or consent of department.

Credits: 1 semester hour; Four hours laboratory each week.

#### Course scheduling

Section offered every Spring at the Rockville campus.

#### **Broad Course Outcomes**

Upon successful completion of this course, a student will be able to:

- Identify and apply appropriate laboratory techniques to solve advanced chemical and biochemical problems.
- Use analytical instrumentation to identify, characterize, quantitate, and analyze organic and biochemical samples.
- Use appropriate computer programs and statistical methods to analyze and interpret experimental data.

#### **Specific Course Objectives**

Upon successful completion of this course, a student will be able to:

- Identify chemical and biochemical problems that can be solved by laboratory experiments.
- Apply laboratory techniques and methods to solve chemical and biochemical problems.
- Use standard analytical chemical and biochemical techniques for measurement of samples.
- Identify and use computer methods for data processing and calculations.
- Use basic statistical methods to assist in analysis and interpretation of laboratory data.
- Use the scientific literature to support or enhance interpretation of experimental results.
- Write formal laboratory reports using appropriate APA and ACS literature citation styles.
- Describe the background, analysis, and results of one experiment in a formal oral presentation.
- Identify chemical and biochemical problems that can be solved by laboratory experiments.

#### Major Topics

Experimental error; statistical analysis; scientific literature; IR spectroscopy, 1H NMR spectroscopy, HPLC, UV/Vis spectroscopy; thin-layer chromatography; titrations; Beer's Law; chemical and enzyme kinetics; DNA melting/annealing; Michaelis-Menten Kinetics; DNA; peptide sequencing; bioinformatics.

chemistry@montgomerycollege.edu

#### **Course Requirements**

Grading procedures will be determined by the individual faculty instructor of each section, but will include the following *minimum* criteria:

- Laboratory Safety Assessment
- Pre-laboratory assignments
- Post-laboratory assignments/reports
- Oral presentation
- Laboratory final examination

# Attendance in laboratory is mandatory. Unexcused absence of three or more lab meetings will result in automatic failure.

#### **Grading Policy**

The following letter grade policy will be used to determine final course grade. A 100 - 90% B 89 - 80% C 79 - 70% D 69 - 60% F < 60%

#### **Required Course Materials**

- Laboratory procedures available through Blackboard LMS course-site.
- Laboratory safety goggles
- Laboratory notebook

#### Example Laboratory Experiments (subject to change)

- 1. Safety in the Chemical Laboratory / Review of IR and <sup>1</sup>H NMR Spectroscopy
- 2. Experimental Error and Statistical Analysis
- 3. Oxidation and Reduction; Analytical Titrations of KMnO<sub>4</sub> and H<sub>2</sub>O<sub>2</sub>
- 4. Identification of a Dipetide Sequence through NMR Analysis
- 5. Thermodynamics of DNA Melting
- 6. Synthesis and Analysis of Duplex DNA Coordinated to Cisplatin
- 7. Chemical Kinetics and Michaelis-Menten Kinetics
- 8. Enzyme Kinetics: Horseradish Peroxidase and TMB
- 9. Introduction to Bioinformatics

#### MC Student Code of Conduct and Academic Honesty

Montgomery College Syllabus Information